

LB361 TEARDOWN SLIDES

Each slide has a descriptive paragraph. Each paragraph has the main points outlined so reading the full text word for word is not necessary when presenting the slides.

There are two topics at the end, Literature, and Tools. These two topics have no slides but should be discussed.

This set consists of 21 slides; the narration consists of 10 pages including this cover. 4/91

Page 2 04/91 CB-023

#1 BLACKMER LB361

#2 LB361 COMPRESSOR

- * Suitable for many applications
- * Liquid transfer/vapor recovery of: propane butane ammonia
- * Transfer without contamination
- * Up to 200 GPM (760 lpm)
- * Driven by 10 or 15 HP motor at 650 to 800 RPM

#3 NAMEPLATE

- * Model number
- * Serial number
- * I.D. number
- * Piston rod inspection
- * Have numbers handy when calling for assistance

Title Slide

The LB361 Compressor is suitable for many applications but the most common is the transfer and vapor recovery of liquefied gases such as propane, butane and ammonia. The non-lubricated cylinder design of the LB361 allows the transfer of these products without contamination of the products and is capable of transferring up to 200 gallons per minute (760 lpm). Typically the LB361 is driven by a 10 or 15 HP driver in the 650 to 800 RPM range. This unit is more fully described in Blackmer bulletins #501 and #901.

of every Blackmer the side On Compressor is a name plate which doubles as an access opening for piston This name plate will rod inspection. show the model number and the serial number of the compressor. Newer models also have an I. D. number. This is a coded number that fully describes the construction of the machine. Any time you call your Blackmer distributor or the factory for assistance, be sure to have these numbers handy.

04/91 CB-023 Page 3

#4 PRESSURE GAUGES

- Suction & discharge
- Pulsation dampener extends gauge life & makes it easier to read.

#5 VALVE CAPS AND HOLD DOWN SCREWS

- * Cap gasket usually aluminum* Screws take a _" allen wrench
- * REMOVE SCREW **COMPLETELY** FROM VALVE CAP

#6 VALVE COVER PLATES

- * O-rings under cover plates are not usually reusable
- * Reassemble covers first then the hold down screws.

Blackmer compressors are typically fitted with a pressure gauge on both the suction and discharge. In this picture the pressure gauge, elbow and the pulsation dampener are shown. The pulsation dampener eliminates much of vibration of the pressure gauge needle making it easier to read and extending the life of the pressure gauge.

To access the valves, the valve caps must be removed. Note the gasket under each This gasket is typically valve cap. aluminum although iron and copper are occasionally used. After the valve caps have been removed, the valve hold down screws can be removed with a " allen wrench. To prevent possible damage to the valves during reassembly, the hold screws must be completely removed from the valve cover plates.

Once the valve caps and hold down screws have been removed, the cover plates can be removed. Note the O-Ring under the valve cover plate. Typically these O-Rings are not reusable and should be replaced any time the cover plates are removed. During reassembly the valve cover plates must be reinstalled first, then the hold down screws installed.

Page 4 04/91 CB-023

#7 VALVES

- Valve spacers
- * Liquid relief device ball & spring
- * Post
- * Valves
- * Valve gaskets usually aluminum
- * Always replace gaskets

With the cover plates removed, the valve spacers and valves may be taken out. The suction valve is shown on the left. The hex shaped part on top is a liquid relief device that helps protect the compressor in case liquid enters the cylinder area. This device consists of a ball and spring relief valve which will allow liquid to be returned to the suction piping if necessary. The discharge valve is held in by a post that slides into the top of the valve. The valve gaskets are normally aluminum although other materials are occasionally used. Valve gaskets should be replaced anytime the valves are removed.

#8 CYLINDER HEAD

* Two center head bolts have metal gaskets

#9 HEAD GASKET and PISTON NUT

- * If gasket is damaged scrape off and replace
- * Remove piston nut with spanner wrench
- * Spanner has ¼' pins

To remove cylinder head, unbolt the two center head bolts from the top of the head and six head bolts from the bottom of the head. The two center head bolts have metal gaskets which must be replaced anytime the bolts are removed. After the cylinder head bolts have been removed the head may be lifted off the cylinder.

The head is sealed to the cylinder with a flat gasket. If the head gasket is damaged in any way it must be replaced. A flat blade scraper like a putty knife may be used to remove the old gasket material from the bottom of the head and the top of the cylinder. Care should be taken not to scratch the metal surfaces. The piston nut is removed with an adjustable spanner as shown. This spanner has two ¼" pins which fit into holes in the top of the piston nut.

Page 5 04/91 CB-023

#10 PISTON

- * Unscrew piston with same spanner
- * Washer & shims are under piston
- * Shims adjust deck height
- * 3 rings & expanders on each piston
- * Ring gap is 180° from expander gap
- * Ring gaps should be staggered around the piston
- * Bevel on inside edge of ring faces up
- * Piston nut has plastic insert

#11 CYLINDER

- * Two O-rings
- * Passage between bores

Once the piston nut has been removed, the same spanner can be used to unscrew the piston from the rod. Under each piston there is a thick washer and one or more adjustment shims. These shims adjust the height of the piston in the cylinder. This is called the deck height. Unless a major part like a piston, cylinder, or crosshead has been changed, the deck height should never need adjustment. Once the first piston has been removed, the crankshaft can be rotated to bring the other piston to top dead center at which time it can be removed. Each piston is fitted with three piston rings. Each ring has a stainless steel expander behind it. Note that when reinstalling the piston rings expanders, each piston ring should be installed with its gap 180° from the expander's gap. The gaps of the piston rings should be staggered equally around the piston. Each ring has a bevel on one This bevel should face inside edge. upwards. Note that the piston nut has a plastic insert that keeps it from backing off.

With the pistons removed, the cylinder can be unbolted. There are six bolts at the bottom of the cylinder. Once the cylinder has been removed the packing boxes are visible. Two O-rings seal the bottom of the cylinder. Notice the passage in the bottom of the cylinder between the bores. This allows gas to move from one cylinder to the other under the pistons as the pistons move up and down.

Page 6 04/91 CB-023

#12 PACKING BOX REMOVAL

- * Remove hold down screw with spanner
- * Hold down screw has plastic insert
- * O-rings seal bottom of packing box

#13 REMOVAL OF THE PACKING FROM THE CARTRIDGE

- * Use inside snap ring pliers on top snap ring
- * Use screwdriver handle to depress spring

The packing boxes are secured by a hold down screw which is removed with the same adjustable spanner that was used on the piston nut and piston. Notice that the hold down screw also has a plastic insert that keeps it in place. Next the packing boxes themselves may be lifted off the rod. O-Rings seal the bottom side of the packing boxes.

To remove the packing from the cartridge, a pair of inside snap ring pliers is used to remove the top snap ring. The handle of a screwdriver can be used to slightly depress the packing spring to make this operation easier.

#14 ROD PACKING

- * Female packing ring on bottom
- * V-rings
- Male packing ring on top

With the snap ring out, the top washer, the spring, the middle washer and the packing can all be removed. Although not necessary, it may be easier to remove the packing if the bottom snap ring and washer are also removed as shown here. Note that the packing consists of three types of rings. One ring is a male ring, next is a series of V-rings, then a female ring. On LB361 compressors, the male ring will be at the bottom.

Page 7 04/91 CB-023

#15 CROSSHEAD GUIDE

* Can inspect piston rods with nameplate removed

With the nameplate removed, the piston rods and the top of the crossheads are visible. The crosshead guide is secured to the crankcase by six bolts.

#16 CRANKCASE AND CROSSHEAD

- * Gasket on left fits between crankcase & guide
- * Access cover & gasket on right
- * Dipstick
- * Oil viscosity & capacity tag
- * Connecting rod nuts are removed to take out crosshead & con rod

With the crosshead guide removed, the crossheads/piston rods are visible. gasket on the left fits between the crosshead guide and crankcase. This is a flat gasket that will typically need to be removed with a flat scraper. On the right is the access cover and its gasket. The oil dipstick is located in the access cover. This cover also includes a tag with the oil viscosity recommendations and capacity. The crossheads must be removed from the crankcase along with the connecting rod assembly. To do this the access cover on the side of the crankcase is removed and the nuts at the bottom of each connecting rod are removed. After the bottom cap of the connecting rod has been removed, the piston rod/crosshead and the top half of the connecting rod may be lifted off from above.

#17 CONNECTING ROD AND CROSSHEAD

- * Lubrication channels
- * Press out wrist pin
- * Plastic retainer plugs
- * Never remove piston rod from crosshead

The connecting rod and crosshead assembly can be separated by removing the wrist pin in a bench press. Note that the wrist pin has a plastic retainer plug on each end. The piston rod is secured to the crosshead with a nut and a pin. The piston rod should never be separated from the crosshead. The grooves in the crosshead are lubrication channels.

Page 8 04/91 CB-023

#18 CONNECTING ROD ASSEMBLY

- * Ductile iron rod
- * Rifle drilled for wrist pin lubrication
- * Split bearing on crank end
- * Tabs on bearings fit in slots in rod and cap - keeps the bearing from spinning and lines up hole with rifle drilled port.
- Wrist pin bushing must be pressed in then honed to proper dimension
- * Hole in bushing must line up with the rifle drilled port
- Keep rod caps on correct rod and oriented properly - match marks

#19 VIEW FROM THE TOP OF THE CRANKCASE

- * Lubrication holes in bearing journals
- * Spray nozzles
- * Crankcase breather

The connecting rod is made of ductile iron. A rifle drilled port connects the two ends of the connecting rod. The rod features an automotive type split bearing on the crankshaft end and a bronze bushing on the wrist pin end. Tabs on the bearings fit into slots in the rod and cap. This keeps the bearing from spinning and lines up the hole with the rifle drilled When the wrist pin bushing is replaced, it must be honed to the final dimensions after being pressed into the connecting rod. The hole in the bushing must also align with the rifle drilled port. Be certain to keep each connecting rod cap with its matching rod. The rod caps must also be oriented correctly on the rod. Match marks are provided on the rod as shown.

Once the connecting rods and crosshead assemblies have been removed, the crankshaft is readily visible. Note the lubrication holes on the bearing journals. Also note the spray nozzles on the crankshaft. These nozzles spray oil up into the crosshead guide. The top of the crankcase is fitted with a breather which prevents entry of foreign material into the crankcase but allows any excess pressure in the crankcase to be safely vented.

Page 9 04/91 CB-023

#20 BEARING COVER PLATE

- * Shims adjust preload on main bearings
- * Lip seal

#21 OIL PUMP

- * Top, arrows indicate direction of rotation
- * Rotate pump cover to change direction of rotation
- * Oil pressure gauge
- * Oil pressure adjustment screws & locknut
- * Oil strainer clean when servicing
- * Oil drain plug

On the flywheel side of the crankcase is the bearing cover plate. Behind this plate are a series of shims which adjust the preload on the main bearings. These shims are normally reusable and the shim thickness will not have to be adjusted unless the crankshaft and/or main bearings are replaced. The bearing cover plate also contains a crankshaft oil seal.

The oil pump is secured to the crankcase by six bolts. Note that the cover of the oil pump has the word "TOP" and an arrow at the twelve O'clock position. This arrow indicates the direction of rotation of the compressor. compressor is to be rotated in the opposite direction, the oil pump cover must be removed and rotated 180°. The oil pressure gauge will also have to be relocated. Once this is done the word "TOP" will then again appear at the position O'clock twelve but corresponding arrow will now point in the opposite direction. On the side of the oil pump housing is the oil pressure adjusting screw and locknut. With the locknut loosened, turning the screw in will increase the oil pressure setting while turning it out (counter-clockwise) will decrease the oil pressure setting. Once set, the lock nut can then be tightened. Beneath the oil pump is the strainer. When servicing, the strainer should be removed and cleaned. If any abnormal foreign material is noted, its source must be identified to prevent reoccurrence of the problems. Note the oil drain plug visible in this view.

Page 10 04/91 CB-023

LITERATURE

- * Parts list
- * Installation, operation, & maintenance manual
- * Other instructions with valves, packing
- * Call Blackmer distributor for literature

Before starting work on your compressor be sure you have the appropriate literature handy. This should include the parts list and the installation operation and maintenance instructions. In addition you may have additional instruction sheets included with such items as valves and packing. If you do not have the proper literature, call your Blackmer distributor.

TOOLS

- * Standard wrenches, etc.
- * " allen wrench
- * Inside snap ring pliers
- * Spanner wrench with 1/4" pins
- * Blackmer tool kit available

In order to service your Blackmer compressor a suitable selection of tools must be available. You probably already have most of the standard wrenches and other tools that will be needed. Be sure you have a _" allen wrench, a pair of inside snap ring pliers, and the spanner wrench with ¼" pins. Blackmer offers a complete tool kit for those who want to keep tools near the compressor.